

EERC . . . The International Center for Applied Energy Technology®

Investigation of Improved Conductivity and Proppant Applications in the Bakken

Oil and Gas Research Council
December 9, 2010
Bismarck, North Dakota

Darren D. Schmidt, P.E.
Energy & Environmental Research Center

Grant Request Details

Description: Use laboratory methods to determine loss of conductivity relative to potential proppant or formation face collapse and suggest means to maintain conductivity.

Applicant – Energy & Environmental Research Center Partners:

Insight Consulting, Mike Vincent Carbo Ceramics, Robert Duenckel, Director of Technical

Development

U.S. Department of Energy (DOE) National Energy Technology

Laboratory (NETL) Joint Research Program

North Dakota Geologic Survey

Request – \$150,000 Cost Share NETL – \$113,201 Cost Share Carbo – \$69,231 Total Program – \$332,432

12-month contract

Technical Justification

OGRC Project
Continental Resources Inc.

G-018-039 "Determination of the Uniqueness of Reserves and Productivity from the Middle Bakken and the Three Forks Sanish Zones"

- Fracture communication from Middle Bakken into Three Forks wellbore.
- Production separate, healed LBS.
- Results suggesting well spacing and potential recovery.

Methodology

Goal: Improve production from the Three Forks and Bakken by identifying the factors that lead to the collapse of propped fractures.

- 1) Is conductivity loss due to collapse of proppant, or collapse of formation face, or some other mechanism?
- 2) Can loss of conductivity be remedied with more appropriate selection of fluid types, proppant types, or proppant concentrations/fracture widths?

Key Elements:

- Collection of core
- Penetration and embedment testing of core relative to fluids:
 - Water
 - Alkali borate cross-linked water-based gels
 - Hydrocarbon-based fracturing fluids
 - Acidic conditions from native CO₂ with combined oil, water, and gas production
- Conductivity testing evaluating relative proppant performance
- Validation to API and ISO standards.

Scope of Work

- Task 1 Obtain core samples
- Task 2 Embedment and penetration testing
- Task 3 Proppant degradation studies
- Task 4 Conductivity testing
- Task 5 Analysis and reporting

													DOODE	00.0DI
	Task Name	Duration	2nd Quarter			3rd Quarter			4th Quarter			1st Quarter		
ID			Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
1	Task 1 – Obtain Core Sample	30 days		₩-										
2	Task 2 – Embedment and Penetration Testing	60 days		i			8→							
3	Task 3 – Proppant Degradation Studies	60 days								•				
4	Task 4 – Conductiivity Testing	60 days												
5	Task 5 – Analysis and Reporting	223 days]	8	8		8			8		:	8	

Tools

Anticipated Results

- The first published measurements of proppant conductivity against actual Bakken core.
- The first published measurements showing how various proppants perform under conditions more similar to the Bakken in situ environment, including CO₂ and other acid gases, with actual or synthetic Bakken crude and produced water.
- A comparison of currently utilized proppants to help operators recognize the range of proppant quality, performance, and durability.
- Benefit Significant additional oil recovery; 30% improvement = 600 million bbl.